
TIME DISTRIBUTION USING THE WORLD WIDE WEB

Andrew N. Novick, Paul R. Franchois, Michael A. Lombardi
National Institute of Standards and Technology

325 Broadway
Boulder, CO 80305

303-497-3378
novick@boulder.nist.gov

Abstract - The National Institute of Standards and
Technology (NIST) is currently providing users of the
Internet with a running time-of-day clock on a web
page. It uses a combination of Hyper Text Markup
Language (HTML), Perl, Java and JavaScript to
show the time for a chosen time zone. Processing and
path delays are estimated to provide the client with an
idea of how close the time displayed is to Coordinated
Universal Time - UTC(NIST). Several future
possibilities and uses of this technology will be
discussed.

WHAT IT DOES

A client visits the web sites at either
http://www.time.gov or http://www.nist.time.gov
and is presented with a map of the United States
(Figure 1). Time zones are shown in alternating
colors, and outlines of the states are visible. As
the cursor passes over different time zones, a
message is displayed specifying which time zone
the cursor is in. When the client clicks in a time
zone, a running or “animated” clock with the
correct time for the chosen time zone is displayed.
Also, a gray-line map shows where the sun is
shining on the Earth at the present time.

Figure 1 - The time zone map page.

HOW IT WORKS

The time zone map is an image map, displayed by
an HTML page, and each time zone on the map is
a link. When the client clicks a time zone link, a
string of parameters is sent to a Common
Gateway Interface (CGI) script written in Perl
(timezone.cgi). Four parameters are sent: the
name of the selected time zone (Pacific,
Mountain, etc.), a character indicating if this
particular time zone observes Daylight Saving
Time (DST), the time offset the selected time zone
is from UTC (in hours), and whether the site
should display a running clock or a static clock
that provides a “snapshot” of the time. A call to
the CGI script might look like this:

http://www.time.gov/timezone.cgi?Eastern/d/-5/java

The parameters indicate that the Eastern time
zone was selected. The “d” signifies that this time
zone does observe DST – Hawaii, most of
Arizona and parts of Indiana are special cases
that don’t observe DST. The “-5” indicates that
Eastern Standard Time is 5 hours behind
Coordinated Universal Time (UTC). The HTML
code attempts to determine if the client’s web
browser supports Java. If it does, then the word
“java” is included with the parameters and the
server will display a running clock in the client’s
web browser. If it does not, then the word “java”
is not sent to timezone.cgi and the server will
display a static “snapshot” of the current time to
the client. Likewise, if the client clicks on
“DISABLE JAVA ANIMATION”, the word “java” is
also omitted from the string.

When it is launched, the timezone.cgi script first
checks the current time and date by getting a time
string from the web server it is running on. The
web server clock is periodically synchronized with
a NIST Internet time server. [1] The script then
calculates if DST is in effect using the current DST
rules for the United States. DST begins at 2:00

a.m. on the first Sunday in April and ends at 2:00
a.m. on the last Sunday on October. Since this
transition does not happen at midnight, the code
has to take into account the time of day, not just
the date, when making the calculation. Also,
because the DST rollover happens at 2:00 a.m.
locally, the script has to determine whether the
current time is before or after this time change for
the specific time zone chosen. In April, clocks are
moved an hour forward and in October, clocks are
moved an hour back. Further, after the October
change, a flag must be set that indicates the
change has already happened. This is because
when the clock has been set back an hour (to
1:00 a.m.), the time change would happen again
at 2:00 a.m., getting stuck in an endless loop.
The April time change does not have this problem
because when the time reaches 2:00 a.m., it
jumps to 3:00 a.m.

Next, the input string is checked to see whether it
is a Java or non-Java request. If it is a Java
request, the HTML file clock_top.html is sent to
the browser, and then Javascript variables are
setup so that the client will be able to call up the
correct gray-line map for the current solar
position. An additional HTML file, clock_mid.html,
is then sent to the browser. It continues
formatting the framework of the page in the
browser.

The timezone.cgi file then sends the Java applet
to the browser of the client. When the applet code
contained in the file, utcnist4.class, is executed, it
calls some methods in two additional files:
correctnist4.class and utcgate3.class. For
security purposes, it is verified that the applet
originated from a NIST domain. At this time, NIST
does not allow people to write their own applets
that use the functions of the web site.

In the applet code, a method measure is called,
which is the basis for getting the correct time and
finding out how long it takes to get it. To get the
time, another method, GetDeltaT is called, which
uses a standard call to the server clock called
GetServerDateStrng. A string containing the time
and date of the NIST web server is sent back to
GetDeltaT. Then, the time is read from the
client’s computer clock. Both time strings have a
resolution of 1 ms, and they are converted to the
number of elapsed milliseconds since the start of
January 1, 1970, which is a time epoch used by
the UNIX operating system. The difference
between the server clock and the client’s clock (in
milliseconds) is calculated and saved as the
variable deltaT. The time and date of the client’s
clock do not need to be close to the correct values
for this to work correctly. For example, if the

client’s clock were behind by exactly one day,
then deltaT would equal +8.640 x 107 (the number
of milliseconds in one day). This value is returned
to the original applet method measure and stored
as a variable c.value. The time shown in the web
browser is the client’s computer clock corrected
by c.value (Figure 2).

To measure the delay of the call to GetDeltaT, the
client’s computer clock is used as a timer. Before
the method GetDeltaT is called, a variable is set
to the client’s current time. When the variable
deltaT is returned, a second variable is set to the
current time of the client. The delay is calculated
by comparing these two variables and stored in a
variable accessDelay. The delay measurement
includes the time it takes for the applet to call the
time server, query the client’s clock, convert the
strings to time since the epoch, calculate the
difference and send the variable back. The
process times out if no values are returned within
3 s. If a value for deltaT comes back in less than
1 s, then the program continues. If not, it tries
again. If it works three times but no values are
returned in less than 1 s, then the shortest delay
is used and the program continues. It will try a
total of five times to get three readings. Upon
failure, it will quit and display the message “Net
Congestion”. The goal is to show an error of less
than 1 s and to show the time only if the error is
less than 3 s.

Figure 2 – A Successful Time Request.

The displayed gray-line map is chosen from
thousands of files that show where the sun is
shining on Earth, based on the time of day and
the day of year. This is calculated using
Javascript in an HTML file named clock-bot.html.

If the applet is left running in a browser, it starts
the process over every ten minutes, so that as the

client’s clock drifts, the time shown is still correct.
A typical computer clock gains or loses at least
several seconds per day. The process is also
restarted if the client’s clock is adjusted, or the
browser window is resized.

If the client is behind a firewall, the java applet
may not work. The applet running on the local
computer contacts the NIST web server on
Transmission Control Protocol (TCP) port 8013,
an arbitrary port chosen by NIST. Modern
firewalls, by default, often close all ports that are
not commonly used, so port 8013 must be
reopened in order to implement the Java clock.

If the non-Java process is used, instead of
running the applet and the Javascript, the HTML
file clock-nojava.html is sent to the browser. In
this case, the web server is called to return a time
string containing the current time and date, which
is adjusted for the selected time zone and is
displayed in the browser. The amount of the
offset includes the DST offset, if applicable, which
was determined earlier. This is a static time
display, and the user can click a “refresh time
snapshot” link (Figure 3). This process uses TCP
port 80, the standard port for Hyper Text Transfer
Protocol (HTTP) requests.

 Figure 3 - The non-Java, “snapshot” Page.

HARDWARE

The Java clock sites run on NIST Boulder’s
external web server. It resides on a 350 MHz
machine with four Gigabytes of main memory and
four 64-bit processors. It runs the a version of the
UNIX operating system. It uses a “highly
available” two-node cluster for failure protection.
This is referred to as a highly available system
because two identical nodes run simultaneously,
and if one fails, the other takes over. The dual
node configuration is not used for load balancing,
just for fail-over protection.

THE CLOCK

The web server clock is the reference for the time
served to web clients. It uses an algorithm called
Autolock to steer the time server clock to
UTC(NIST).[2] The algorithm periodically
synchronizes the web server clock with a NIST
Internet time server that transmits UTC(NIST).
The internal oscillator of the web server clock is
characterized over time and steered to correct its
frequency. This algorithm could be considered to
be a slow frequency-locked loop. The benefit of
steering instead of just synchronizing more often
is that if the network link to the NIST server is
temporarily lost, the clock frequency will stay
close to the correct frequency for an extended
period, keeping the web server on time. This
algorithm holds the time uncertainty of the web
server clock to less than 100 ms with respect to
UTC(NIST) at all times, even if the link to NIST is
unavailable for more than a day.

HISTORY

The original web clock produced by the NIST
Time and Frequency Division was part of the
division web site located at
http://www.boulder.nist.gov/timefreq. This
clock was added to the web site in 1997, and was
easily the site’s most popular feature. Due to its
popularity the decision was made to create a new
web site, independent of the division site, whose
sole purpose would be to display the correct time.
As a result, the time.gov domain name was
registered on June 23, 1999 and the time.gov web
site went on-line immediately afterwards.

Although the time.gov web site was designed and
is maintained by NIST, the decision to launch the
original site was made jointly with the United
States Naval Observatory (USNO), which, like
NIST, is an official source of time in the United
States. The information displayed on the time.gov
pages pertains to both NIST and the USNO as
part of a mutual recognition agreement between
the agencies. The nist.time.gov site was
launched on January 5, 2001. Although its inner
workings are essentially the same as time.gov, it
displays some information that is NIST-specific.
The time.gov web sites are already the most
visited web sites maintained by NIST, and their
usage is expected to increase at a rapid rate
during the coming years.

USERS

By December 1999, the time.gov site was
receiving about one million time requests per
month. The average number of time requests on

time.gov in 2001 has been around two million per
month, and the maximum was over three million
per month. April and October are the peak
months most likely due to the Daylight Saving
Time transition days. An alternate page,
nist.time.gov, was implemented early in 2001 to
focus on and link solely back to NIST. All NIST
web pages link to nist.time.gov, but time.gov is
linked extensively by other sites on the Internet.
The traffic on nist.time.gov grew to over one
million time requests per month by October 2001.
Many of the requests for these pages are
undoubtedly the same users checking different
time zones or coming back later (or daily) to check
the time. Some users leave the applet running in
their browsers for extended periods of time. Since
the applet automatically starts its process over
every 10 minutes, this type of user accounts for 6
time requests per hour.

The demographics of the users are unknown;
however, over 60% of the requests originate from
.com and .net domains. Around 5% are from .edu
domains, and 1% are from .gov domains.
Although the sites are extensively linked from
around the World Wide Web, most users originate
from search engines and other NIST sites. Figure
4 shows the traffic growth of both sites.

Figure 4 – Usage of time.gov Web Sites

OTHER TYPES OF WEB CLOCKS

The goal of time.gov and nist.time.gov is to
efficiently provide the correct time with a running
clock to as many users as possible. There are
several other examples of clocks being displayed
on web sites; however, most of these merely
display the time from the client’s own computer
clock. There is at least one other example where
a running clock is “streamed” from a web server to
a client’s browser. It is a graphical representation
of a clock which is being constantly refreshed by
the server. This method is highly inefficient, since
it requires a connection to each client for the
entire duration over which the clock is displayed.

For this reason, it disconnects after twenty
seconds.

Audio clocks are available where a voice
announces the current time. These are
bandwidth-intensive but, more importantly, due to
buffering in the client’s audio software, they
announce the time 5 to 10 seconds late.

Other Java clocks use a servlet to communicate
with the server. This approach, more direct than
using an applet, may help circumvent problems
for users behind firewalls. However, it does not
appear to work with all browsers.

IMPROVEMENTS

The web clock can be improved in many ways,
both functionally and aesthetically. Providing a
button to change from the current 24-hour clock
representation to a 12-hour clock with an
indication of a.m. and p.m. will provide many
users time in the format they are accustomed to
using. Also, enabling clients to observe the time
around the world would be very useful. Due to the
number of countries and DST rules around the
world, this would be a lengthy endeavor. Showing
the time in all time zones simultaneously would
also improve the usability of the site, as well as
cut down on the number of the requests to the
CGI script. In other words, on the index page,
each time zone would show a running clock with
the “local” time for that time zone. Also, the gray-
line map calculation could be done once every
hour by the server, and it would send the
appropriate graphic when the page is requested.
This would save the applet from doing orbital
calculations every time a request is made.

Another way to streamline the time requests
would be to take out some of the repeated calls to
the web server. The first request is made just to
get a date to see whether DST is in effect or not.
Instead, the server could calculate this once per
day and include it in the time string sent to the
client. Also, the web server is queried several
times in order to measure the shortest delay.
Since the delay is shown on the web page, and
we are not providing the information for making
measurements or establishing traceability, these
steps could be eliminated.

It would also be very useful if clients could
automatically set their computer clocks to the time
on the web site. This is possible, but there are
security issues involved. A web site is not allowed
to alter anything on a client’s computer without
special permission. Also, different operating

systems would have to be handled accordingly,
complicating the process.

MEASUREMENT UNCERTAINTIES

Our goal for the time.gov web sites is to reliably
display the time within 1 s of UTC(NIST), and this
goal is realized for most time requests. If a Java
time request is made, the page displays the
estimated error of the time display. This serves
as a very coarse estimation of the uncertainty of
the displayed time, with a resolution of 100 ms
(0.1 s). However, the instabilities in this delay are
much larger than the resolution. Due to
processing delays introduced by both the server
and client (the dominant source of uncertainty),
and/or network delays introduced by a busy
Internet service provider, it is impossible to
provide time to all clients within 1 s of
UTC(NIST). In some cases the uncertainty might
as large as 3 s or more, so the measurement
uncertainty for a typical user is very difficult to
characterize.

Since the uncertainty is so difficult to characterize,
we recommend that the time.gov web sites in their
current form be used a time-of-day displays only,
and should not be used to establish traceability to
UTC(NIST) or UTC(USNO) for measurements of
time interval or frequency, not even for
measurements (such as stop watch or timer
calibrations) with the most modest requirements.
We anticipate that future enhancements made to
the sites will make them more suitable for
metrological applications.

CONCLUSION

As the number of Internet users grows, more and
more people will utilize NIST time services on the
web. Both streamlining its operation and
increasing its functionality are goals for the
evolution of the time.gov and nist.time.gov web
pages.

The mention of company or product names in this
paper neither constitutes nor implies
endorsement by the National Institute of
Standards and Technology.

Contributions of NIST, an agency of the U.S.
government, are not protected by copyright.

REFERENCES

[1] Levine, Judah. The NIST Internet Time
Services. Proc. of 25th Precise Time and Time
Interval Planning and Applications Meeting (PTTI),
Marina Del Rey, CA. 1993 November. 505-511.

[2] Levine, Judah. Time Synchronization over the
Internet using an Adaptive Frequency-Locked
Loop. IEEE Trans. On UFFC(46): 888-896;
1999.

	MSC 2002 Main Menu
	Search
	Print
	Acrobat Help
	Program
	By Title
	By Author
	By Session

	Exit

